
Password Interception in a SSL/TLS Channel

Brice Canvel1, Alain Hiltgen2, Serge Vaudenay1, and Martin Vuagnoux3

1 Swiss Federal Institute of Technology (EPFL) - LASEC
http://lasecwww.epfl.ch

2 UBS AG
email:alain.hiltgen@ubs.com

3 EPFL - SSC, and Ilion
http://www.ilionsecurity.ch

Abstract. Simple password authentication is often used e.g. from an
email software application to a remote IMAP server. This is frequently
done in a protected peer-to-peer tunnel, e.g. by SSL/TLS.
At Eurocrypt’02, Vaudenay presented vulnerabilities in padding schemes
used for block ciphers in CBC mode. He used a side channel, namely error
information in the padding verification. This attack was not possible
against SSL/TLS due to both unavailability of the side channel (errors
are encrypted) and premature abortion of the session in case of errors. In
this paper we extend the attack and optimize it. We show it is actually
applicable against latest and most popular implementations of SSL/TLS
(at the time this paper was written) for password interception.
We demonstrate that a password for an IMAP account can be intercepted
when the attacker is not too far from the server in less than an hour in
a typical setting.
We conclude that these versions of the SSL/TLS implementations are not
secure when used with block ciphers in CBC mode and propose ways to
strengthen them. We also propose to update the standard protocol.

1 Introduction

1.1 CBC-PAD in Secured Channels

Peer-to-peer secure channels can be established by the TLS protocol [9]. It con-
sists in, first, negotiating a cipher suite and security parameters, second, ex-
changing secret keys. Then messages are first authenticated with a Message
Authentication Code (MAC), then encrypted with a symmetric cipher. Block
ciphers, e.g. the Triple DES (3DES) [3] are frequently used in Cipher Block
Chaining (CBC) mode [4] with padding. Let b be the block length in characters
(e.g. b = 8 for DES).

Let MES be the message to be sent. First we append the MAC of MES
to MES. We obtain MES|MAC. Then we pad MES|MAC with a padding PAD
such that MES|MAC|PAD|LEN is of length a multiple of b where LEN is a single
byte whose value ` is the length of PAD in bytes. PAD is required by the TLS
specifications to consist of ` bytes equal to `. Then MES|MAC|PAD|LEN is cut

582 B. Canvel et al.

into a block sequence x1, x2, . . . , xn (each xi has a length of b), then encrypted
in CBC mode, i.e. transformed into y1, y2, . . . , yn with

yi = ENC(yi−1 ⊕ xi)

where ENC denotes the block cipher. (We do not discuss about the initial vector
y0 which can be either a part of the secret key, or a random value sent with the
ciphertext, or a fixed value.)

When y1, y2, . . . , yn is received, it is first decrypted back into x1, x2, . . . , xn.
Then we look at the last byte LEN, call ` its value, and separate the padding
PAD of length ` and LEN from the plaintext. It is required that PAD should be
checked to consist of bytes all equal to `. If this is not the case, a padding error
is generated. Otherwise the MAC is extracted then checked. If the MAC is not
valid, a MAC error is generated. Otherwise the cleartext MES is extracted and
processed.

In TLS, fatal errors such as incorrect padding or bad MAC errors simply
abort the session. It should also be outlined that error messages are sent through
the same channel, i.e. they are MACed, padded, then encrypted before being
sent.

A typical application of TLS is when an email application connects to a
remote IMAP server [8]. For this, the application (client) simply sends the user
name and password through the secured channel, i.e. the message MES includes
the password in clear.

1.2 Side Channel Attack against CBC-PAD

In 2002, Vaudenay [17] presented an attack which enables the decryption of
blocks provided that error messages are available (as a side channel attack)
and sessions do not abort. We thus assume that we can send a ciphertext to
the server and get the answer which is either an error or an acknowledgment.
We modelize this as an oracle O. When the answer is a padding error message
(decryption failed), we say that O answers 0. Otherwise (bad record mac),
the oracle O answers 1.

Let y be the ciphertext block to decrypt. The purpose of the attack is to find
the block x such that y = ENC(x). Following [17], and as depicted on Fig. 1, we
first transform the oracle O into an oracle Check1(y, u) which checks whether
“the ENC−1(y) block ends with the byte sequence u” or not. We then use this
oracle in DecryptByte1(y, s) in order to decrypt a new character in ENC−1(y)
from the known tail s of x. We then use this process in DecryptBlock1(y) in
order to decrypt a full block y.

The attack of [17] works against WTLS [2]. It does not work against TLS for
two reasons. First of all, as soon as a padding or MAC error occurs the session
is broken and needs to restart with a freshly exchanged key. As pointed out in
[17], the attack could have still worked in order to decrypt only the rightmost
byte with a probability of success of 2−8. It can also be adapted in order to
test if x ends with a given pattern. (In [17] the oracle in the corresponding

Password Interception in a SSL/TLS Channel 583

DecryptBlock1(y)
1: for i = 1 to b do

2: ci ←DecryptByte1(y, ci−1| . . . |c1)
3: end for

4: return cb| . . . |c1

DecryptByte1(y, s)
1: for all possible values of byte c do

2: if Check1(y, c|s) = 1 then

3: return c

4: end if

5: end for

Check1(y, u)
1: let i be the length of u
2: let L be a random string of length b− i

3: let R = (i− 1)|(i− 1)| . . . |(i− 1) of length i

4: r ← L|(R⊕ u)
5: build the fake ciphertext r|y to be sent to the oracle
6: return O(r|y)

Fig. 1. Side Channel Attack against CBC-PAD.

attacks is called a “bomb oracle”.) This does not work either against TLS for
another reason: because error messages are not available to the adversary (they
are indeed encrypted and indistinguishable). In order to make them “even less
distinguishable”, standard implementations of the TLS protocol now use the
same error message for both types or errors (as specified for SSL) in order to
protect against this type of attack [13].

Other studies investigated attacks against paddings, like Black-Urtubia [6]
which considered other modes than the CBC mode, and Paterson-Yau4 which
considered the CBC mode of ISO/IEC 10116 [1].

1.3 Structure of this Paper

In this paper we first explain in Section 2 how to distinguish between the two
types of errors by using another side channel attack based on timing discrep-
ancies. We perform experimental analysis and optimize the attack. Section 3
then explains how to push the attack forward in several broken TLS sessions.
We analyze the attack. Section 4 optimizes the attack by performing dictionary
attacks against password authentication. We finally describe an experimental at-
tack (Section 5), discuss about practical consequences (Section 6), and conclude.

4 Personal communication.

584 B. Canvel et al.

2 Timing Attack

2.1 Attack Principles

In order to get access to the error type which is not directly available, we try
to deduce it from a side channel by performing a timing attack [12]. Instead of
getting 0 or 1 depending on the error type, we now have an oracle which outputs
the timing answer T of the server. The principle of the attack is as follows: in
order to check if the padding is correct, the server only needs to perform simple
operations on the very end of the ciphertext. When the padding is correct, the
server further needs to perform cryptographic operations throughout the whole
ciphertext in order to check the MAC, and this may take more time. We use the
discrepancy between the time it takes to perform the two types of operations in
order to get the answer from the oracle.

We increase the discrepancy of the two types of errors by enlarging the ci-
phertext: the longer the ciphertext, the longer the MAC verification. (The MAC
verification time increases linearly with the length of MES.) Hence we replace
the r|y fake ciphertext in DecryptByte1 by f |r|y where f is a random block
sequence of the longest acceptable length (i.e. 214 + 2048 bytes in TLS).5

Formally we let DW (resp. DR) be the distribution of the timing answer from
the server when there is a padding error (resp. a MAC error). We let µW (resp.
µR) be its expected value. We will use the following approximation.

Conjecture 1. We approximate DR and DW by normal distributions with the
same standard deviation σ and expected values µR and µW respectively. We
assume w.l.o.g. that µW < µR.

We further make the query to the oracle several times in order to make a
statistical analysis. We use a predicate ACCEPT in order to decide whether or
not the error type is a padding or a MAC.

Provided that the adversary is close to the server, the time measurement may
be influenced by a little noise. An unexpectedly long answer may occur due to
other protocol issues. These answers are ignored in the experiment. In practice
we ignore times which are greater that a given threshold B.

On Fig. 2 is the updated algorithm. It uses a DecryptBlock2 algorithm
which is similar to DecryptBlock1. Note that Check2 may miss the right
byte, so DecryptByte2 needs to repeat the loop until the byte is found.

2.2 Experiment

We made a statistical analysis of the answer time for the two types of errors. The
distributions DW and DR can be seen on the graph of Fig. 3. The expected values

5 This trick applies assuming that CBC decryption and MAC verification are not done
at the same time.

Password Interception in a SSL/TLS Channel 585

DecryptByte2(y, s)
1: repeat

2: for all possible values of byte c do

3: if Check2(y, c|s) = 1 then

4: return c

5: end if

6: end for

7: until byte is found

Check2(y, u)
1: make r in order to test u as in Check1

2: build the fake ciphertext f |r|y to be sent to the oracle
(f is the longest possible random block sequence)

4: query the oracle n times and get T1, . . . , Tn

(answers which are larger than B are ignored)
6: return ACCEPT(T1, . . . , Tn)

Fig. 2. Regular Timing Attack.

µR and µW and the standard deviations σR and σW for the two distributions
are as follows:

µR ≈ 23.63 µW ≈ 21.57

σR ≈ 1.48 σW ≈ 1.86.

We take σ = σW ≈ 1.86. From the graph, we can clearly see that the two distribu-
tions are distinguishable. The following section formalizes this distinguishability.
Note that these values were obtained on a LAN where a firewall was present be-
tween the attacker and the server, so the attacker was not directly connected to
the server.6

2.3 Analysis of the Best ACCEPT Predicate

The ACCEPT predicate is used in order to decide whether the distribution of
the answers is DR (the predicate should be true) or DW (the predicate should
be false). The predicate introduces two types of wrong information. We let ε+

(resp. ε−) be the probability of bad decision when the distribution is DW (resp.
DR). The ε+ and ε− probabilities can be interpreted as the probabilities of false
positives and false negatives of a character correctness test. The optimal tradeoff
between ε+ and ε− is achieved by the ACCEPT predicate which is given by the
Neyman-Pearson lemma:

ACCEPT :
fR(T1)

fW (T1)
× . . .× fR(Tn)

fW (Tn)
> τ

6 More precisely, the route between the attacker and the server included two switches
and a firewall (a PC running Linux).

586 B. Canvel et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 18 20 22 24 26 28 30 32

Time (in 1/1000s)

decryption_failed
bad_mac_error

Fig. 3. Distribution of the number of decryption failed and bad mac error error
messages with respect to time.

with fR and fW the density functions of DR and DW respectively and a given
threshold τ . Depending on τ we trade ε+ against ε−.

With the approximation by a normal distribution the ACCEPT test can be
written

n
∏

i=1

e−
(Ti−µR)2

2σ2

e−
(Ti−µW)2

2σ2

> τ

which is equivalent to

T1 + . . .+ Tn
n

>
µR + µW

2
+

σ2 log τ

n(µR − µW)

so we equivalently can change the definition of τ and consider

ACCEPT :
T1 + . . .+ Tn

n
> τ ′

as the ACCEPT test choice. With this we obtain

ε− = ϕ

(

τ ′ − µR
σ

√
n

)

ε+ = ϕ

(

−τ ′ − µW
σ

√
n

)

Password Interception in a SSL/TLS Channel 587

Check3(y, u)
1: make r in order to test u as in Check1

2: build the fake ciphertext f |r|y to be sent to the oracle as in Ckeck2

3: j ← 0
4: repeat

5: j ← j + 1
6: query the oracle and get Tj

(a Tj larger than B is ignored and the query is repeated)
8: until STOP(T1, . . . , Tj)
9: return ACCEPT(T1, . . . , Tj)

Fig. 4. Timing Attack with a Sequential Distinguisher.

where

ϕ(x) =
1√
2π

∫ x

−∞

e−
t2

2 dt.

2.4 Using Sequential Decision Rules

On Fig. 4 is a more general algorithm skeleton. Basically, we collect timing
samples Tj until some STOP predicate decides that there are enough of these for
the ACCEPT predicate to decide. We use DecryptByte3 and DecryptBlock3

algorithms which are similar to DecryptByte2 and DecryptBlock2.
By using the theory of hypothesis testing with sequential distinguishers (see

Junod [11]), we obtain that the most efficient algorithms are obtained with the
following STOP and ACCEPT tests.

STOP :
fR(T1)

fW (T1)
× . . .× fR(Tj)

fW (Tj)
6∈ [τ−, τ+]

ACCEPT :
fR(T1)

fW (T1)
× . . .× fR(Tj)

fW (Tj)
> τ+

where τ− and τ+ are two given thresholds. Assuming Conjecture 1, this is equiv-
alent to

STOP : T1 + . . .+ Tj − j
µR + µW

2
6∈ [τ ′−, τ

′
+] (1)

ACCEPT : T1 + . . .+ Tj − j
µR + µW

2
> τ ′+ (2)

where

τ ′+ =
σ2

µR − µW
log τ+ (3)

τ ′− =
σ2

µR − µW
log τ−. (4)

588 B. Canvel et al.

Thanks to the Wald Approximation, we can freely select ε+ and ε−, compute
the corresponding τ+ and τ− by

τ+ ≈
1− ε−
ε+

τ− ≈
ε−

1− ε+

and deduce the expected number J of samples (i.e. the j iterations) until STOP
holds and ACCEPT takes the right decision by

JW ≈ −
2σ2

(µR − µW)2
log τ−

JR ≈
2σ2

(µR − µW)2
log τ+

when the character to be tested is wrong or right respectively.7

3 Multi-session Attack

3.1 Attack Strategy

Since sessions are broken as soon as there is an error, the attacks from previous
sections do not work. We now assume that each TLS session includes a criti-
cal plaintext block x which is always the same (e.g. a password) and that we
intercept the corresponding ciphertext block y = ENC(x ⊕ y′). (Here y′ is the
previous ciphertext block following the CBC mode.) The target x is constant in
every session, but y and y′ depend on the session. The full attack is depicted
on Fig. 5. Here the Check4 oracle no longer relies on some y since this block
is changed in every session. The Check4(u) is called in order to check whether
“the x plaintext block ends with the byte sequence u” or not. The plaintext block
x is equal to ENC−1(y)⊕ y′ for some current key, and some current ciphertext
blocks y and y′. We assume that the oracle can get y and y′.

3.2 Analysis

Let C be the average complexity of DecryptBlock4. Let Z denote the set of
all possible byte values. Let p be the probability of success of DecryptBlock4.
Let pi be the success probability of DecryptByte4(s) assuming that s is the
right tail of length i− 1. We have p = p1 · · · pb.

In order to simplify our analysis, we assume that the target block is uni-
formly distributed in Zb so that step 1 of DecryptByte4 can be ignored. We
further consider a weaker algorithm in which the outer repeat/until loop of De-

cryptByte4 is removed (i.e. we consider that the attack fails as soon as a STOP
predicate is satisfied but the ACCEPT predicate takes a bad decision).

7 For a mathematical treatment on these results we refer to Siegmund [15].

Password Interception in a SSL/TLS Channel 589

DecryptBlock4

1: for i = 1 to b do

2: ci ←DecryptByte4(ci−1| . . . |c1)
3: end for

4: return cb| . . . |c1

DecryptByte4(s)
1: sort all possible c characters in order of decreasing likelihood.
2: repeat

3: for all possible values of character c do

4: if Check4(c|s) = 1 then

5: return c

6: end if

7: end for

8: until byte is found

Check4(u)
1: j ← 0
2: repeat

3: j ← j + 1
4: wait for a new session and get the current y and y′ blocks
5: let i be the length of u
6: let L be a random string of length b− i

7: let R = (i− 1)|(i− 1)| . . . |(i− 1) of length i

8: r ← (L|(R⊕ u))⊕ y′

9: build the fake ciphertext f |r|y to be sent to the oracle
(f is the longest possible random block sequence)

11: query the oracle and get Tj

(if it is larger than B then go back to Step 4)
13: until STOP(T1, . . . , Tj)
14: return ACCEPT(T1, . . . , Tj)

Fig. 5. Password Interception inside SSL/TLS.

590 B. Canvel et al.

Here we assume that all characters of the unknown block x are independent
and uniformly distributed in the alphabet Z. Thus all pis are equal. We have

p1 =

|Z|
∑

i=1

1

|Z| (1− ε+)
i−1(1− ε−)

=
1− (1− ε+)

|Z|

|Z|ε+
(1− ε−)

≈ (1− ε+)
|Z|−1

2 (1− ε−)

when ε+ ¿ 1
|Z| thus

p ≈ (1− ε+)
b
|Z|−1

2 (1− ε−)
b.

Note that p ≈ 1 when ε+ ¿ 1
b|Z| and ε− ¿ 1

b
. Assuming that the algorithm

succeeds, the average number or iterations per byte is

|Z|
∑

i=1

1

|Z| ((i− 1)JW + JR) =
|Z| − 1

2
JW + JR

so the average complexity per block is

C = b
|Z| − 1

2
JW + bJR.

Numerical examples will be given in a more general context in Section 4.3.

4 Password Interception with Dictionary Attack

4.1 Attack Description

We now use the a priori distribution of x in the previous attack in order to de-
crease the complexity. For instance, if x is a password corresponding to an IMAP
authentication, we perform a kind of dictionary attack on x. We assume that we
have precomputed a dictionary of all possible x blocks with the corresponding
probability of occurrence. We use it in the first step of DecryptByte4 in order
to sort the c candidates.

4.2 Analysis

We consider a list of possible blocks cb . . . c1. We let Pr[cb . . . c1] be the occurrence
probability of a plaintext block. We also let Pr[ci . . . c1] be the sum Pr[cb . . . c1]
for all possible cb . . . ci+1.

We arrange the dictionary of all blocks into a search tree. The root is con-
nected to many subtrees, each corresponding to a c1 character. Each subtree
corresponding to a c1 character is connected to many sub-subtrees, each corre-
sponding to a c2 character... We label each node of the tree by a ci . . . c1 string.

Password Interception in a SSL/TLS Channel 591

We assume that the list of subtrees of any node ci . . . c1 is sorted in decreas-
ing order of values of Pr[ci+1ci . . . c1]. We let N(ci+1 . . . c1) be the rank of the
ci+1 . . . c1 subtree of the node ci . . . c1 in the list.

We let Ci be the average number to trials for finding ci (if the attack succeeds)
and C0 = C1 + . . .+ Cb.

We have

Ci =
∑

ci,...,c1

Pr[ci, . . . , c1]N(ci . . . c1)

so

C0 =

b
∑

i=1

∑

ci,...,c1

Pr[ci, . . . , c1]N(ci . . . c1).

Note that C0 = b |Z|−1
2 + b when cb . . . c1 is uniformly distributed in Zb so

this generalizes the analysis from Section 3.2.

The expected complexity in case of success is (C0− b)JW + bJR thus approx-
imately

C ≈ 2σ2

(µR − µW)2

(

(C0 − b) log
1

ε−
+ b log

1

ε+

)

p ≈ (1− ε+)
C0−b(1− ε−)

b

when ε− and ε+ are small against b−1 and C−1
0 respectively. The problem is to

select ε− and ε+ in order to maximize p and minimize C. Computations shows
that this is the case when

(

δC

δε+

)

/

(

δ log p

δε+

)

=

(

δC

δε−

)

/

(

δ log p

δε−

)

hence,

b/ε+

(C0 − b)/(1− ε+)
=

(C0 − b)/ε−
b/(1− ε−)

.

With the assumption that ε+ ¿ 1 and ε− ¿ 1, we deduce

ε+

ε−
≈ b2

(C0 − b)2

thus

ε+ =
b2

t

ε− =
(C0 − b)2

t

592 B. Canvel et al.

for some parameter t. With the same approximation we obtain

p ≈ exp

(

−C0(C0 − b)b

t

)

ε+ ≈
b

C0(C0 − b)
log

1

p

ε− ≈
C0 − b

C0b
log

1

p

and finally, we deduce C in terms of the success probability p as well as τ− and
τ+:

C ≈ 2σ2

(µR − µW)2

(

C0 logC0 − (C0 − 2b) log
C0 − b

b
− C0 log log

1

p

)

(5)

log τ+ ≈ logC0 + log(C0 − b)− log b− log log
1

p
(6)

log τ− ≈ log(C0 − b)− logC0 − log b+ log log
1

p
. (7)

Note that C = O(− log log 1
p
). If p ∼ 1 we have log 1

p
∼ 1− p so p = 1− e−Ω(C).

The failure probability decreases exponentially with the complexity.

4.3 Numerical Example

We have used dictionary [5] from which we have selected only words of size b = 8
characters (i.e. 8 bytes), giving a total word count of 712′786 words and ordered
it as described the previous section. For this dictionary, we have calculated that
C0 = 31 and then implemented algorithm DecryptBlock4 and confirmed this
result. Note that C0 = 31 is a quite remarkable result since the best search rule
for finding a password out of a dictionary of D = 712′786 words consists of
dlog2 De = 20 binary questions, so the overhead is only of 11 questions.

Example 2. Table 1 shows complexity C and values log τ− and log τ+ for a given
success probability p in the case of the dictionary [5] being used and also for
uniform distributions with |Z| = 256, 128, and 64.

The complexity for p = 50% is 166 with the dictionary attack and 4239 for
a fully random block. Similar computation with the DecryptBlock2 strategy
shows that sequential distinguishers lead to a improvement factor between 4 and
5. This illustrates the power of this technique.

5 Implementation of the Attack

In this section we describe how the DecryptBlock4 was implemented in prac-
tice against an IMAP email server.

Password Interception in a SSL/TLS Channel 593

Dictionary, C0 = 31

p 0.5 0.6 0.7 0.8 0.9 0.99

C 166 181 199 223 261 380

log τ− -2.74 -3.05 -3.41 -3.88 -4.62 -6.98

log τ+ 4.86 5.16 5.52 5.99 6.74 9.09

Uniform distribution, |Z| = 256, C0 = 1028

p 0.5 0.6 0.7 0.8 0.9 0.99

C 4239 4750 5353 6139 7397 11335

log τ− -2.45 -2.76 -3.12 -3.59 -4.34 -6.69

log τ+ 12.15 12.46 12.81 13.28 14.03 16.38

Uniform distribution, |Z| = 128, C0 = 516

p 0.5 0.6 0.7 0.8 0.9 0.99

C 2179 2346 2738 3132 3764 5741

log τ− -2.46 -2.77 -3.12 -3.60 -4.35 -6.70

log τ+ 10.76 11.07 11.43 11.90 12.65 15.00

Uniform distribution, |Z| = 64, C0 = 260

p 0.5 0.6 0.7 0.8 0.9 0.99

C 1140 1269 1421 1620 1938 2934

log τ− -2.48 -2.78 -3.14 -3.61 -4.36 -6.71

log τ+ 9.38 9.68 10.04 10.51 11.26 13.61

Table 1. Calculated complexity C and threshold values log τ− and log τ+ for algorithm
DecryptBlock4 given success probability p with µR = 23.63, µW = 21.57, σ = 1.86
and heuristic value B = 32.93 for dictionary [5] and uniform distributions in Zb.

594 B. Canvel et al.

5.1 Setup

The multi-session attack has been implemented using the Outlook Express 6.x
client from Microsoft under Windows XP and an IMAP Rev 4 server8. Outlook
sends the login and password to the IMAP server using the following format:

XXXXÃLOGINÃ"username"Ã"password"<0x0d><0x0a>

Here XXXX are four random digits which are incremented each time Outlook
connects to the server.

An interesting feature of Outlook is that (by default) it checks for messages
automatically every 5 minutes and also that it requires an authentication for
each folder created on the IMAP user account, i.e. we have a bunch of free
sessions every 5 minutes. For instance, with five folders (in, out, trash, read, and
draft), we obtain 60 sessions every hour. If Outlook is now configured to check
emails every minute, the fastest attack of Table 1 with 166 sessions requires half
an hour. Outlook notices that some protocol errors occur but this does not seem
to bother it at all.

The TLS tunneling between the IMAP server and Outlook Express was im-
plemented using stunnel v3.229.

The attack is a man-in-the-middle type attack where connection requests to
the IMAP server from the Outlook client are redirected to the attacker’s ma-
chine using DNS spoofing [16] where the attacker intercepts the authentication
messages and attempts to decrypt it using DecryptBlock4.

Note that the attack is performed on a Local Area Network.

5.2 Problems and Notes

Two main problems arose when implementing the multi-session attack using
the above setup. Firstly, Outlook uses the RC4 MD5 algorithm by default10

despite the fact that [9] and [14] suggest that 3DES EDE CBC SHA should be
supported by default. Hence, we had to force the IMAP server to only offer block
ciphers in CBC mode.

The second problem comes from the format of the authentication message.
It can be the case that the last bytes of the password belong to the first block of
the MAC of the message. So it sometimes happens that the last few bytes of the
password cannot be decrypted using the multi-session attack described in this
paper. For example, assume that the user name has four characters so that we
have the following for an 8-byte block cipher:

|0021ÃLOG|INÃ"name|"Ã"passw|ord"<0x0d><0x0a><HMAC1><HMAC2>|

then it will not be possible to decrypt the last three characters from the password.

8 http://www.washington.edu/imap/
9 http://www.stunnel.org

10 Some other applications like stunnel use the CBC mode by default.

Password Interception in a SSL/TLS Channel 595

As explained in [13], a countermeasure against the CBC-PAD problem [17]
has been implemented in OpenSSL 0.9.6d and following versions so that only the
bad mac error error message is sent when an incorrect padding or an incorrect
MAC are detected. However, during our experiments, we have seen that the
timing differences still exist and are even easier to identify with this version
than previous ones.

6 Discussion

Obviously, the attack works if the following conditions are met.

1. A critical piece of information is repeatedly encrypted at a predictable place.
2. A block cipher in CBC mode is chosen.
3. The attacker can sit in the middle and perform active attacks.
4. The attacker can distinguish time differences between two types of errors.

In this paper we focused on the password access control in the IMAP protocol.
We can also consider the basic authentication in HTTP [10] which is also used
for access control. This means that we can consider intercepting the password
for accessing to an Intranet server (e.g. the web server of the program committee
of the Crypto’03 Conference!). The attack would work in the same way provided
that the above conditions are met, and in particular when the clients of program
committee members send their passwords more than a hundred times and do
not care about errors.

We can also consider other critical information than just passwords which
are sent by the clients to the server. We can consider decrypting a particular
constant block of plaintext of a private URL which is retrieved from a server
by many clients or by a single one many times. For instance, we can try to
decrypt data about the bank account of a client in electronic banking systems.
Systems whose security fully rely only on the SSL/TLS protocol would certainly
face to security threats. Fortunately, systems that we are aware of use additional
security means. They use challenge-response authentication instead of password
authentication. They also block accesses in case of multiple failures.

Fixing the problem is quite simple (it was actually done in OpenSSL versions
older than 0.9.6i).11 One can simply try to make error responses time-invariant
by simulating a MAC verification even when there is a padding error. One can
additionally add some random noise in the time delay. Obviously, session errors
should be audited. Note that the problem should also be fixed on the client
side which will take much more time than fixing it on the server side. In the
meantime, servers should become more sensitive to the types or errors issued by
our attack.

Some people claimed that the problem we pointed out in this paper is related
to an implementation mistake for SSL/TLS. We can however argue that the
problem was raised in [17] in 2002, that an update was made, and that an error

11 See http://www.openssl.org

596 B. Canvel et al.

was still present in current versions one year after. Since there are so many
possible mistakes in implementing the protocol we can reasonably claim that
this is a protocol problem rather than an implementation one.

For future versions of the TLS protocol we recommend to invert the MAC
and padding processes: the sender first pad the plaintext then MAC it, so that
the receiver can first check the MAC then check the padding if the MAC is valid.
This would thwart any active attack in which messages which are received are
not authentic.

7 Conclusion

In this paper we have derived a multi-session variant of the attack of [17] in order
to show that it is possible to attack SSL/TLS in the case when the message that
is being encrypted remains the same during each session. This is the case, for
example, when an email client such as Outlook Express connects to an IMAP
server. We have detailed the attack and described the setup we have used in
order to perform it.

One problem we have encountered is that the error messages sent in SSL/TLS
are encrypted and it is not possible to easily differentiate which is being sent by
the client or the server. A solution to this problem is to look at timings between
errors messages. We have shown that when using sequential distinguishers, we
can efficiently intercept and decrypt a password for an IMAP account in less
than an hour. In doing so, we have also shown that the post-[17] version of
OpenSSL [13] is not secure when used with block ciphers in CBC mode. Hope-
fully, this will have been easily fixed by the time the present paper is published.

Interestingly, we have run one of the first timing attacks through a network
and not directly on the attacked device. Another timing attack (against RSA)
was run in parallel by Brumley and Boneh [7].

Our attack also illustrates how the theory of sequential distinguishers [11]
can be used in order to optimize practical attacks.

8 Acknowledgments

We owe Pascal Junod useful discussions about the timing attack, the idea to fill
the message with f , and some helpful details about sequential tests. We thank
Gildas Avoine for useful comments. We would also like to thank Bodo Möller
for his immediate feedback and the OpenSSL community for caring about our
attack in real time. We thank the media for there very positive interest in our
results. We also received threats from several companies involved in security
which seems to mean that they cared about our results.

The work presented in this paper was supported (in part) by the National
Competence Center in Research on Mobile Information and Communication Sys-
tems (NCCR-MICS), a center supported by the Swiss National Science Founda-
tion under grant number 5005-67322.

Password Interception in a SSL/TLS Channel 597

References

1. ISO/IEC 10116, Information Processing — Modes of Operation for an n-bit
Block Cipher Algorithm. International Organization for Standardization, Geneva,
Switzerland, 1991.

2. Wireless Transport Layer Security. Wireless Application Protocol WAP-261-
WTLS-20010406-a. Wireless Application Protocol Forum, 2001.
http://www.wapforum.org/

3. FIPS 46-3, Data Encryption Standard (DES). U.S. Department of Commerce —
National Institute of Standards and Technology. Federal Information Processing
Standard Publication 46-3, 1999.

4. FIPS 81, DES Modes of Operation. U.S. Department of Commerce — National
Bureau of Standards, National Technical Information Service, Springfield, Virginia.
Federal Information Processing Standards 81, 1980.

5. English Word List Elcomsoft Co. Ltd. http://www.elcomsoft.com
6. J. Black, H. Urtubia. Side-Channel Attacks on Symmetric Encryption Schemes:

The Case for Authenticated Encryption. In Proceedings of the 11th Usenix UNIX
Security Symposium, San Francisco, California, USA, USENIX, 2002.

7. D. Brumley, D. Boneh. Remote Timing Attacks are Practical. To appear in Pro-
ceedings of the 12th Usenix UNIX Security Symposium, USENIX, 2003.

8. M. Crispin. Internet Message Access Protocol - Version 4. RFC 1730, standard
tracks, University of Washington, 1994.

9. T. Dierks, C. Allen. The TLS Protocol Version 1.0. RFC 2246, standard tracks,
the Internet Society, 1999.

10. J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. Inter-
net standard. RFC 2617, the Internet Society, 1999.

11. P. Junod. On the Optimality of Linear, Differential and Sequential Distinguishers.
In Advances in Cryptology EUROCRYPT’03, Warsaw, Poland, Lectures Notes in
Computer Science 2656, pp. 17–32, Springer-Verlag, 2003.

12. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
other Systems. In Advances in Cryptology CRYPTO’96, Santa Barbara, California,
U.S.A., Lectures Notes in Computer Science 1109, pp. 104–113, Springer-Verlag,
1996.

13. B. Möller. Security of CBC Ciphersuites in SSL/TLS: Problems and Countermea-
sures. 2002. http://www.openssl.org/~bodo/tls-cbc.txt

14. C. Newman Using TLS with IMAP, POP3 and ACAP. RFC 2595, standard tracks,
the Internet Society, 1999.

15. D. Siegmund. Sequential Analysis — Tests and Confidence Intervals, Springer-
Verlag, 1985.

16. M. Ricca. The Denver Projet - A Combination of ARP and DNS Spoofing. Ecole
Polytechnique Fédérale de Lausanne, LASEC, Semester Project, 2002.
http://lasecwww.epfl.ch

17. S. Vaudenay. Security Flaws Induced by CBC Padding — Applications to
SSL, IPSEC, WTLS... In Advances in Cryptology EUROCRYPT’02, Amsterdam,
Netherland, Lectures Notes in Computer Science 2332, pp. 534–545, Springer-
Verlag, 2002.

18. M. Vuagnoux. CBC PAD Attack against IMAP over TLS. omen. Ecole Polytech-
nique Fédérale de Lausanne, LASEC, Semester Project, 2003.
http://omen.vuagnoux.com

